精英家教网 > 高中数学 > 题目详情

已知函数f(x)是偶函数,且当数学公式=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
C
分析:先由函数f(x)是偶函数,将转化为,再证明∈(0,1),从而代入已知解析式求值即可
解答:∵函数f(x)是偶函数
==
∵0=log21<<log22=1,x∈(0,1)时,f(x)=2x-1
=-1==
故选C
点评:本题考查了函数的奇偶性及其应用,对数函数的性质,对数运算性质等基础知识,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)的奇偶性;
(3)求函数h(x)在(0,
2
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);    
(2)判断函数f(x)+g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);
(2)判断函数f(x)+g(x)的奇偶性.
(3)求函数f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

同步练习册答案