【题目】设函数,其中表示中的最小者.下列说法错误的是
A. 函数为偶函数 B. 若时,有
C. 若时, D. 若时,
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的值;
(3)设,若在内是减函数,对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且).
(1)判断的奇偶性并证明;
(2)若,判断在的单调性并用复合函数单调性结论加以说明;
(3)若,是否存在,使在的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f(1)=–2,f(1.5)=0.625,f(1.25)≈–0.984,f(1.375)≈–0.260,关于下一步的说法正确的是( )
A. 已经达到精确度的要求,可以取1.4作为近似值
B. 已经达到精确度的要求,可以取1.375作为近似值
C. 没有达到精确度的要求,应该接着计算f(1.4375)
D. 没有达到精确度的要求,应该接着计算f(1.3125)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com