精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中表示中的最小者.下列说法错误的是

A. 函数为偶函数 B. 时,有

C. 时, D. 时,

【答案】D

【解析】分析:由题意结合新定义的知识首先画出函数f(x)的图像,然后结合图像逐一分析所给的选项即可求得最终结果.

详解:结合新定义的运算绘制函数f(x)的图像如图1中实线部分所示,

观察函数图像可知函数图像关于y轴对称,则函数为偶函数,选项A的说法正确;

对于选项B

,则,此时

,则,此时

如图2所示,观察可得,恒有,选项B的说法正确;

对于选项C,由于函数为偶函数,故只需考查时不等式是否成立即可,

,则,此时

,则,此时

,则,此时

如图3所示,观察可得,恒有选项C的说法正确;

对于选项D

,则

不满足选项D的说法错误.

本题选择D选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若关于的方程的解集中恰有一个元素,求的值;

3)设,若内是减函数,对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性并证明;

2)若,判断的单调性并用复合函数单调性结论加以说明;

3)若,是否存在,使的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当时,求在区间上的最值;

(2)讨论的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,以为折痕把折起,使点到达点的位置.

(1)若,求三棱锥体积的最大值;

(2)若,证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f1)=–2f1.5)=0.625f1.25≈–0.984f1.375≈–0.260,关于下一步的说法正确的是( )

A. 已经达到精确度的要求,可以取1.4作为近似值

B. 已经达到精确度的要求,可以取1.375作为近似值

C. 没有达到精确度的要求,应该接着计算f1.4375

D. 没有达到精确度的要求,应该接着计算f1.3125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间/

10

11

12

13

14

15

等候人数y/

23

25

26

29

28

31

调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.

(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;

(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;

(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.

附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,这两个函数图象的交点个数为____个.(参考数值:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步练习册答案