12£®É躯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪD£¬Èç¹û´æÔÚ·ÇÁã³£ÊýT£¬¶ÔÓÚÈÎÒâx¡ÊD£¬¶¼ÓÐf£¨x+T£©=T•f£¨x£©£¬Ôò³Æº¯Êýy=f£¨x£©ÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£¬·ÇÁã³£ÊýTΪº¯Êýy=f£¨x£©µÄ¡°ËÆÖÜÆÚ¡±£®ÏÖÓÐÏÂÃæËĸö¹ØÓÚ¡°ËÆÖÜÆÚº¯Êý¡±µÄÃüÌ⣺
¢ÙÈç¹û¡°ËÆÖÜÆÚº¯Êý¡±y=f£¨x£©µÄ¡°ËÆÖÜÆÚ¡±Îª-1£¬ÄÇôËüÊÇÖÜÆÚº¯Êý£»
¢Ú¶ÔÓÚ¡°ËÆÖÜÆÚ¡±ÎªTµÄº¯Êýy=f£¨x£©£¬Èôf£¨T£©£¾0£¬Ôòf£¨2015T£©£¾0£»
¢Ûº¯Êýf£¨x£©=xÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£»
¢Üº¯Êý·É£¨x£©=2-xÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£»
¢ÝÈç¹ûº¯Êýf£¨x£©=cos¦ØxÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£¬ÄÇô¡°¦Ø=k¦Ð£¨ÆäÖУ¬kÊÇij¸öÕûÊý£©¡±£®
ÆäÖÐÊÇÕæÃüÌâµÄÐòºÅÊǢ٢ڢܢݣ¨Ð´³öËùÓÐÂú×ãÌõ¼þµÄÃüÌâÐòºÅ£©

·ÖÎö ¸ù¾ÝËÆÖÜÆÚº¯ÊýµÄ¶¨Ò壬·Ö±ð½øÐÐÅжϼ´¿É£®

½â´ð ½â£º¢ÙÈç¹û¡°ËÆÖÜÆÚº¯Êý¡±y=f£¨x£©µÄ¡°ËÆÖÜÆÚ¡±Îª-1£¬
Ôòf£¨x-1£©=-f£¨x£©£¬¼´f£¨x-1£©=-f£¨x£©=-£¨-f£¨x+1£©£©=f£¨x+1£©£»
¹ÊËüÊÇÖÜÆÚΪ2µÄÖÜÆÚº¯Êý£»¹Ê¢ÙÕýÈ·£¬£»
¢Ú¶ÔÓÚ¡°ËÆÖÜÆÚ¡±ÎªTµÄº¯Êýy=f£¨x£©£¬Èôf£¨T£©£¾0£¬Ôòf£¨2015T£©=T2014¡äf£¨T£©£¾0£»¹Ê¢ÚÕýÈ·£¬
¢ÛÈôº¯Êýf£¨x£©=xÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£¬
Ôò´æÔÚ·ÇÁã³£ÊýT£¬Ê¹f£¨x+T£©=T•f£¨x£©£¬
¼´x+T=Tx£»¹Ê£¨1-T£©x+T=0ºã³ÉÁ¢£»
¹Ê²»´æÔÚT£®¹Ê¼ÙÉè²»³ÉÁ¢£¬¹Ê¢Û´íÎó£»
¢ÜÈôº¯Êýf£¨x£©=2-xÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£¬
Ôò´æÔÚ·ÇÁã³£ÊýT£¬Ê¹f£¨x+T£©=T•f£¨x£©£¬
¼´2-x-T=T•2-x£¬
¼´£¨T-2-T£©•2-x=0£»
¶øÁîy=x-2-x£¬×÷ͼÏóÈçÏ£¬
 
¹Ê´æÔÚT£¾0£¬Ê¹T-2-T=0£»¹Ê¢ÜÕýÈ·£»
¢ÝÈôº¯Êýf£¨x£©=cos¦ØxÊÇ¡°ËÆÖÜÆÚº¯Êý¡±£¬
Ôò´æÔÚ·ÇÁã³£ÊýT£¬Ê¹f£¨x+T£©=T•f£¨x£©£¬
¼´cos£¨¦Øx+¦ØT£©=Tcos¦Øx£»
¹ÊT=1»òT=-1£»
¹Ê¡°¦Ø=k¦Ð£¬k¡ÊZ¡±£®¹Ê¢ÝÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü¢Ý£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓ뺯ÊýÓйصÄÃüÌâµÄÕæ¼ÙÅжϣ¬ÕýÈ·Àí½âËÆÖÜÆÚº¯ÊýµÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô¼¯ºÏA={x||x|£¾1£¬x¡ÊR}£¬B={y|y=2x2£¬x¡ÊR}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{x|-1¡Üx¡Ü1}B£®{x|x¡Ý0}C£®{x|0¡Üx¡Ü1}D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®A£¬B£¬C£¬D4ÃûѧÉú°´ÈÎÒâ´ÎÐòÕ¾³ÉÒ»ÅÅ£¬ÊÔÇóÏÂÁÐʼþµÄ¸ÅÂÊ£º
£¨1£©AÔÚ±ßÉÏ£»
£¨2£©AºÍB¶¼ÔÚ±ßÉÏ£»
£¨3£©A»òBÔÚ±ßÉÏ£»
£¨4£©AºÍB¶¼²»ÔÚ±ßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èôº¯Êýf£¨x£©=2cos2x-2acosx+a2-2a-1£¨0$¡Üx¡Ü\frac{¦Ð}{2}$£©µÄ×îСֵΪ-2£¬ÇóʵÊýaµÄÖµ²¢Çó´Ëʱf£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬Ô²OµÄÄÚ½Ó¡÷ABCÖУ¬MÊÇBCµÄÖе㣬AC=3£¬AB=$\sqrt{7}$£¬Ôò$\overrightarrow{AO}•\overrightarrow{AM}$=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Çóº¯Êýy=$\frac{sin2xcosx}{1-sinx}$µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª|$\overrightarrow{a}$|=6£¬|$\overrightarrow{b}$|=4£¬$\overrightarrow{a}$•$\overrightarrow{b}$=-12$\sqrt{2}$£¬Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼×ÒÒÁ½ÈË·Ö±ð´ÓA³Çµ½B³Ç£¬¼×ÒÔËÙ¶Èv1×ßÁËÒ»°ëµÄ·³Ì£¬ÒÔËÙ¶Èv2×ßÁËÁíÒ»°ëµÄ·³Ì£»ÒÒµÄÐгÌÖÐÓÐÒ»°ëµÄʱ¼äËÙ¶ÈΪv1£¬ÁíÒ»°ëʱ¼äµÄËÙ¶ÈΪv2£¬±È½Ï¼×¡¢ÒÒÁ½ÈË´ÓA³Çµ½B³ÇËùÐèµÄʱ¼ä´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x2+ax+1£¬Èô¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨1+x£©=f£¨1-x£©£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸