精英家教网 > 高中数学 > 题目详情

如图,长方体ABCD-A1B1C1D1中,AB=A1A=a,BC=数学公式a,M是AD中点,N是B1C1中点.
(1)求证:A1、M、C、N四点共面;
(2)求证:BD1⊥MCNA1
(3)求证:平面A1MNC⊥平面A1BD1
(4)求A1B与平面A1MCN所成的角.

解:(1)取A1D1中点E,连接ME、C1E,
∴A1N∥C1E且C1E=A1N,MC∥EC、
∴A1N∥MC且MC=A1N∴A1,M,C,N四点共面.

(2)连接BD,则BD是D1B在平面ABCD内的射影.
,∴Rt△CDM~Rt△BCD,∠DCM=∠CBD、
∴∠CBD+∠BCM=90°.∴MC⊥BD、∴D1B⊥MC.

(3)连接A1C,由A1BCD1是正方形,知D1B⊥A1C.
∵D1B⊥MC,∴D1B⊥平面A1MCN.
∴平面A1MCN⊥平面A1BD1

(4)由(3)知平面A1MCN⊥平面A1BD1
∴A1C是直线A1B在平面A1MCN内的身影
∴∠BA1C是A1B与平面A1MCN所成的角
又∵A1B⊥BC,A1B=BC
∴∠BA1C=45°
分析:(1)取A1D1中点E,连接ME、C1E推知MC∥EC,推知A1N∥MC且MC=A1N,得到A1,M,C,N四点共面.
(2)连接BD,得到BD是D1B在平面ABCD内的射影,得到,得到Rt△CDM~Rt△BCD,得到∠DCM=∠CBD,得到MC⊥BD,从而得到D1B⊥MC.
(3)连接A1C,由A1BCD1是正方形,得到D1B⊥A1C.由D1B⊥MC,得到D1B⊥平面A1MCN,得到平面A1MCN⊥平面A1BD1
(4)由(2)(3)得到∠BA1C是A1B与平面A1MCN所成的角.
点评:本题主要考查平面图形的量的关系来推知空间线线位置关系,进而得到线面,面面位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,长方体ABCD-A1B1C1D1中被截去一部分,
(1)其中EF∥A1D1.剩下的几何体是什么?截取的几何体是什么?
(2)若FH∥EG,但FH<EG,截取的几何体是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,其中AB=BC,E,F分别是AB1,BC1的中点,则以下结论中
①EF与BB1垂直;
②EF⊥平面BCC1B1
③EF与C1D所成角为45°;
④EF∥平面A1B1C1D1
不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,P是线段AC的中点.
(1)判断直线B1P与平面A1C1D的位置关系并证明;
(2)若F是CD的中点,AB=BC=1,且四面体A1C1DF体积为
2
12
,求三棱锥F-A1C1D的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知如图:长方体ABCD-A1B1C1D1中,交于顶点A的三条棱长别为AD=3,AA1=4,AB=5.一天,小强观察到在A处有一只蚂蚁,发现顶点C1处有食物,于是它沿着长方体的表面爬行去获取食物,则蚂蚁爬行的最短路程是(  )
A、
74
B、5
2
C、4
5
D、3
10

查看答案和解析>>

同步练习册答案