【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线x-y+2=0的距离为3。
(1)求椭圆的方程;
(2)设直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N。当|AM|=|AN|时,求m的取值范围。
【答案】(1);(2).
【解析】试题分析:(1)根据右焦点到直线x﹣y+=0的距离为3,利用点到直线的距离公式求出c,再由椭圆的一个顶点为A(0,﹣1),求出b,从而得到椭圆方程.(2)设A为弦MN的中点,由,得(3k2+1)x2+6kmx+3(m2﹣1)=0.利用根的判别式和韦达定理,结合题设能求出m的取值范围.
解析:
(1) 设右焦点F(c,0),(c>0),则,∴.∵椭圆的一个顶点为A(0,﹣1),∴b=1,a2=3,∴椭圆方程是.
(2)设P为弦MN的中点,由得(3k2+1)x2+6kmx+3(m2﹣1)=0.
由△>0,得m2<3k2+1 ①,
∴xP=,
从而yP=kxp+m=.
∴kBP=.
由MN⊥AP,得=﹣,
即2m=3k2+1②.
将②代入①,得2m>m2,
解得0<m<2.由②得k2=>0.
解得m>.故所求m的取值范围为(,2).
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【河南省新乡市2017届高三上学期第一次调研】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为.
(1)求椭圆和抛物线的方程;
(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直
线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①若,则;②若,则;③若,则;④若, 且,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.
根据以上频率分布直方图,回答下列问题:
(1)求这100名学生成绩的及格率;(大于等于60分为及格)
(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.
(1)请计算原棚户区建筑用地的面积及的长;
(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com