精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1) 求出函数的导数,通过讨论 的范围, 得增区间, 得减区间; (2)问题转化为讨论 的范围,根据函数的单调性求出 的最小值即可求出 的范围.

试题解析:(1).

(i)当时, ,函数上单调递增;

(ii)当时,令,则

,即,函数单调递增;

,即时,函数单调递减.

综上,当时,函数上单调递增;当时,函数的单调递增区间是,单调递减区间是.

(2)令,由(1)可知,函数的最小值为,所以,即.

恒成立与恒成立等价,

,即,则.

①当时, .(或令,则

上递增,∴,∴上递增,∴.

).

在区间上单调递增,

恒成立.

②当时,令,则

时, ,函数单调递增.

∴存在,使得,故当时, ,即,故函数上单调递减;当时, ,即,故函数上单调递增,

不恒成立,

综上所述, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数在点点处的切线方程;

(2)当时,求函数的极值点和极值;

(3)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者10元钱;若摸得非同一颜色的3个球。摸球者付给摊主2元钱。

(1)摸出的3个球中至少有1个白球的概率是多少?

(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点,则

1)若直线lxy轴的正半轴分别交于AB两点,且OAB的面积为4,求直线l的方程;

2若直线l与原点距离为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前n项和为满足,公比大于1的等比数列满足 .

1求证数列是等差数列,并求其通项公式

2求数列的前n项和

3)在(2)的条件下,若对一切正整数n恒成立求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足

1)求数列{an}的通项公式;

2)求证:数列{an}中的任意三项不可能成等差数列;

3)设Tn{bn}的前n项和,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x) (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.

(1)k的值及f(x)的表达式;

(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:

-1

0

4

5

1

2

2

1

①函数的极大值点为0,4;

②函数在[0,2]上是减函数;

③如果当时,的最大值是2,那么的最大值为4;

④当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若在区间上具有相同的单调性,求实数的取值范围;

(2)若,且函数的最小值为,求的最小值.

查看答案和解析>>

同步练习册答案