【题目】已知椭圆:的离心率为,设直线过椭圆的上顶点和右焦点,坐标原点到直线的距离为2.
(1)求椭圆的方程.
(2)过点且斜率不为零的直线交椭圆于,两点,在轴的正半轴上是否存在定点,使得直线,的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在三棱锥中,,二面角、、的大小均为,设三棱锥的外接球球心为,直线交平面于点,则三棱锥的内切球半径为_______________,__________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新《水污染防治法》已由中华人民共和国第十二届全国人民代表大会常务委员会第二十八次会议于2017年6月27日通过,自2018年1月1日起施行.2018年3月1日,某县某质检部门随机抽取了县域内100眼水井,检测其水质总体指标.
罗斯水质指数 | 02 | 24 | 46 | 68 | 810 |
水质状况 | 腐败污水 | 严重污染 | 污染 | 轻度污染 | 纯净 |
(1)求所抽取的100眼水井水质总体指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).
(2)①由直方图可以认为,100眼水井水质总体指标值服从正态分布,利用该正态分布,求落在(5.21,5.99)内的概率;
②将频率视为概率,若某乡镇抽查5眼水井的水质,记这5眼水井水质总体指标值位于(6,10)内的井数为,求的分布列和数学期望.
附:①计算得所抽查的这100眼水井总体指标的标准差为;
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,直线交椭圆于两点,为坐标原点.
(1)若直线过椭圆的右焦点,求的面积;
(2)若,试问椭圆上是否存在点,使得四边形为平行四边形?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为12的正方体中,已知E,F分别为棱AB,的中点,若过点,E,F的平面截正方体所得的截面为一个多边形,则该多边形的周长为________,该多边形与平面,ABCD的交线所成角的余弦值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com