【题目】在一个不透明的箱子里放有四个质地相同的小球,四个小球标的号码分别为1,1,2,3.现甲、乙两位同学依次从箱子里随机摸取一个球出来,记下号码并放回.
(Ⅰ)求甲、乙两位同学所摸的球号码相同的概率;
(Ⅱ)求甲所摸的球号码大于乙所摸的球号码的概率.
【答案】(1);(2).
【解析】
试题分析:(I)记号码为的小球为 ,,号码为的小球为 ,号码为的小球为,则所有可能的结果如下:,,,,,,,,,,,,,,,共个,设事件“甲、乙两位同学所摸的球的号码相同”,则包含,,,,,共基本事件,所以;(II)设事件“甲所摸的球的号码大于乙所摸的球号码”,则事件包含,,,,共个基本事件,所以.本题考查古典概型概率问题,首先根据题意写出基本事件空间,然后分别求出事件所包含的基本事件个数,然后根据古典概型概率公式(表示基本事件总数,表示事件所包含的基本事件个数)可以求出相应的概率.
试题解析:(1)记号码为1的小球为A1 ,A2 ,号码为2的小球为B ,号码为3的小球为C
由题意可知,甲、乙两位同学各摸取一个小球,所有可能的结果有16个,(A1,A1),(A1,A2),(A1,B),(A1,C),(A2,A1),(A2,A2),(A2,B),(A2,C),(B,A1),(B,A2),(B,B),(B,C),(C,A1),(C,A2),(C,B),(C,C) 4分
(Ⅰ)用M表示事件“甲、乙两位同学所摸的小球号码相同”,
则M包含的基本事件有:
(A1,A1),(A1,A2),(A2,A1),(A2,A2),(B,B),(C,C),共有6个.
所以P(M)= 8分
(Ⅱ)用N表示事件“甲所摸的球号码大于乙所摸的球号码”,
则N包含的基本事件有:
(B,A1),(B,A2),(C,A1),(C,A2,),(C,B),共有5个.
所以P(N)= 12分
科目:高中数学 来源: 题型:
【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 | 1.2 | 2.7 | 1.5 | 2.8 | 1.8 | 2.2 | 2.3 | 3.2 | 3.5 |
2.5 | 2.6 | 1.2 | 2.7 | 1.5 | 2.9 | 3.0 | 3.1 | 2.3 | 2.4 |
服用B药的20位患者日平均增加的睡眠时间:
3.2 | 1.7 | 1.9 | 0.8 | 0.9 | 2.4 | 1.2 | 2.6 | 1.3 | 1.4 |
1.6 | 0.5 | 1.8 | 0.6 | 2.1 | 1.1 | 2.5 | 1.2 | 2.7 | 0.5 |
(1) 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2) 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药 | B药 | |
0. 1. 2. 3. |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,一个长轴端点为,离心率,过P分别作斜率为的直线PA,PB,交椭圆于点A,B。
(1)求椭圆的方程;
(2)若,则直线AB是否经过某一定点?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某省举办的娱乐节目“快乐向前冲”的海选过程中设置了几名导师,负责对每批初选合格的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加“待定”赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加“待定”赛的选手能够进入第二轮比赛的概率如下表:
参赛选手成绩所在区间 | ||
每名选手能够进入第二轮的概率 |
假设每名选手能否通过“待定”赛相互独立,现有4名选手的成绩分别为(单位:分)43,45,52,58,记这4名选手在“待定”赛中通过的人数为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由与圆心距离相等的两条弦长相等,想到与球心距离相等的两个截面圆的面积相等,用的是( )
A. 三段论推理 B. 类比推理 C. 归纳推理 D. 传递性关系推理
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】央视财经频道《升级到家》栏目答题有奖,游戏规则:每个家庭两轮游戏,均为三局两胜,第一轮3题答对2题,可获得小物件(家电),价值1600元;第二轮3题答对2题,可获得大物件(家具)价值5400元(第一轮的答题结果与第二轮答题无关),某高校大二学生吴乾是位孝顺的孩子,决定报名参赛,用自己的知识答题赢取大奖送给父母,若吴乾同学第一轮3题,每题答对的概率均为,第二轮三题每题答对的概率均为.
(Ⅰ)求吴乾同学能为父母赢取小物件(家电)的概率;
(Ⅱ)若吴乾同学答题获得的物品价值记为(元)求的概率分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com