【题目】已知为定义在上的奇函数,当时,有,且当时,,下列命题正确的是( )
A.B.函数在定义域上是周期为的函数
C.直线与函数的图象有个交点D.函数的值域为
【答案】A
【解析】
推导出当时,,结合题中等式得出,可判断出A选项的正误;利用特殊值法可判断B选项的正误;作出函数在区间上的图象,利用数形结合思想可判断C选项的正误;求出函数在上的值域,利用奇函数的性质可得出函数的值域,可判断出D选项的正误.
函数是上的奇函数,,由题意可得,
当时,,,A选项正确;
当时,,则,,,
则函数不是上周期为的函数,B选项错误;
若为奇数时,,
若为偶数,则,即当时,,
当时,,若,且当时,,
,
当时,则,,
当时,,则,
所以,函数在上的值域为,
由奇函数的性质可知,函数在上的值域为,
由此可知,函数在上的值域为,D选项错误;
如下图所示:
由图象可知,当时,函数与函数的图象只有一个交点,
当或时,,此时,函数与函数没有交点,
则函数与函数有且只有一个交点,C选项错误.
故选:A.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为4,且过点.
(1)求椭圆的标准方程;
(2)设为椭圆上一点,过点作轴的垂线,垂足为,取点,连接,过点作的垂线交轴于点,点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数f(x)=2lnx﹣ax2+3x,其中a∈R.
(1)若f(1)=2,求函数f(x)的最大值;
(2)若a=﹣1,正实数x1,x2满足f(x1)+f(x2)=0,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,各项均为正整数的数列定义如下: ,
(1)若,写出,,;
(2)求证:数列单调递增的充要条件是为偶数;
(3)若为奇数,是否存在满足?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
A. 平面平面ABN B.
C. 平面平面AMN D. 平面平面AMN
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为给定的不小于的正整数,考察个不同的正整数,,,构成的集合,若集合的任何两个不同的非空子集所含元素的总和均不相等,则称集合为“差异集合”.
(1)分别判断集合,集合是否是“差异集合”;(只需写出结论)
(2)设集合是“差异集合”,记,求证:数列的前项和;
(3)设集合是“差异集合”,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com