精英家教网 > 高中数学 > 题目详情
12分)
要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X1的分布列为
X1
5
6
7
8
9
10
P
0.03
0.09
0.20
0.31
0.27
0.10
同学乙击目标的环数X2的分布列为
X2
5
6
7
8
9
P
0.01
0.05
0.20
0.41
0.33
 (1)请你评价两位同学的射击水平(用数据作依据);
(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?
(1) 两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
(2) 如果其它班的参赛选手的射击成绩都在9环左右就派甲同学去参加,若其它班的参赛选手的成绩都在7环左右,就派同学乙去参加。
(1)利用期望和方差公式求出两变量的期望和方差;(2)根据第(1)问的结论选择水平高的选手
解:(1)EX1,EX2
=8
DX1=1.50  DX2=0.8
两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
(2)如果其它班的参赛选手的射击成绩都在9环左右就派甲同学去参加,若其它班的参赛选手的成绩都在7环左右,就派同学乙去参加。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。
(1)求这名射手在射击比赛中命中目标的概率;
(2)求这名射手在比赛中得分的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲乙两人进行象棋比赛,规定:每次胜者得1分,负者得0分;当其中一人的得分比另一人的得分多2分时则赢得这场比赛,此时比赛结束;同时规定比赛的次数最多不超过6次,即经6次比赛,得分多者赢得比赛,得分相等为和局。已知每次比赛甲获胜的概率为,乙获胜的概率为,假定各次比赛相互独立,比赛经ξ次结束,求:
(1)ξ=2的概率;
(2)随机变量ξ的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励. 已知此技术难题在攻关期限内被甲小组攻克的概率为,被乙小组攻克的概率为
(1)设为攻关期满时获奖的攻关小组数,求的分布列及数学期望
(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递增”为事件C,求事件C发生的概率;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)高三年级班参加高考体检,个班中,任选个班先参加视力检查. (I)求这个班中恰有个班班级序号是偶数的概率;
(II)设为这个班中两班序号相邻的组数(例如:若选出的班为班,则有两组相邻的,班和班,此时的值是).求随机变量的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市第一中学要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.
(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;
(2)求恰有两个区域用红色鲜花的概率;
(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量ξ的分布列为
ξ
1
2
3
4
5
P
0.1
0.2
0.4
0.2
0.1
η=2ξ-3,则η的期望为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

随机变量的分布如图所示则数学期望         

0
1
2
3





 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张贺年卡,记取回自己贺年卡的同学个数为,则的数学期望为      

查看答案和解析>>

同步练习册答案