精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线和直线是直线上一点,过点做抛物线的两条切线,切点分别为是抛物线上异于的任一点,抛物线在处的切线与分别交于,则外接圆面积的最小值为______.

【答案】

【解析】

设三个切点分别为,求出三条切线方程,三条切线方程分别联立求出坐标,点在直线上,得到关系,求出,进而求出,设三角形外接圆半径为,利用,求出的解析式,根据其特征,求出最小值.

设三个切点分别为

若在点处的切线斜率存在,

设方程为联立,

得,

所以切线方程为

若在点的切线斜率不存在,则

切线方程为满足①方程,

同理切线的方程分别为

,联立方程,

,解得,即

同理

外接圆半径为

时取等号,

在直线

当且仅当时等号成立,

此时外接圆面积最小为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求a的值;

2)若是函数的极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018131日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在1948分,2051分食既,2129分食甚,2207分生光,2311分复圆.月全食伴随有蓝月亮和红月亮,全食阶段的红月亮在食既时刻开始,生光时刻结束.小明准备在19552156之间的某个时刻欣赏月全食,则他等待红月亮的时间不超过30分钟的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:

2)若有且只有一个零点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=3sin(﹣3x)﹣2的图象向右平移个单位长度得到函数gx)的图象,若gx)在区间[θ]上的最大值为1,则θ的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为等腰梯形,丄底面.

(1)证明:平面平面

(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最大值;

2)若函数有相同极值点.

求实数的值;

若对于为自然对数的底数),不等式恒成立,

求实数的取值范围.

查看答案和解析>>

同步练习册答案