精英家教网 > 高中数学 > 题目详情

【题目】已知fx=gx=x++a,其中a为常数.

1)若gx)≥0的解集为{x|0xx≥3},求a的值;

2)若x1∈(0,+∞),x2[12]使fx1)≤gx2)求实数a的取值范围.

【答案】(1).(2) a≥-2

【解析】

1)由题意可得x2+ax+1=0的解为3,由韦达定理可得a的值;

2)由题意可得fx1max≤g(x2max,运用对号函数的单调性可得最大值,解不等式可得所求范围.

解:(1x++a≥0的解集为{x|0xx≥3}

可得x2+ax+1=0的解为3

即有a=-3+=-

2x10+∞),x2[12]使fx1gx2),

可得fx1maxgx2max

x0时,fx==,当且仅当x=1时,取得最大值

1≤x≤2时,gx=x++a递增,可得gx)的最大值为g2=+a

+a.解得a≥-2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型工厂有6台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为.已知1名工人每月只有维修2台机器的能力(若有2台机器同时出现故障,工厂只有1名维修工人,则该工人只能逐台维修,对工厂的正常运行没有任何影响),每台机器不出现故障或出现故障时能及时得到维修,就能使该厂获得10万元的利润,否则将亏损2万元.该工厂每月需支付给每名维修工人1万元的工资.

(1)若每台机器在当月不出现故障或出现故障时,有工人进行维修(例如:3台大型机器出现故障,则至少需要2名维修工人),则称工厂能正常运行.若该厂只有1名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有2名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为实常数)

I)当时,求函数上的最大值及相应的值;

II)当时,讨论方程根的个数.

III)若,且对任意的,都有,求

实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于),点在线段上,且满足.已知,设.

1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.为何值时,工艺礼品达到最佳观赏效果;

2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.为何值时,取得最大值,并求该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱,AB=BCDE分别为的中点.

(1)证明:ED为异面直线BB1AC1的公垂线段

(2)AB=1, ,求二面角A1—AD—C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若对任意0恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱

B. 四棱锥的四个侧面都可以是直角三角形

C. 有两个平面互相平行,其余各面都是梯形的多面体是棱台

D. 棱台的各侧棱延长后不一定交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点(与不重合),沿修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。

(1)设(弧度),将绿化带的总长度表示为的函数

(2)求绿化带的总长度的最大值。

查看答案和解析>>

同步练习册答案