精英家教网 > 高中数学 > 题目详情

已知a,b,cR,且三次方程有三个实根

(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;

(2)若abc均大于零,证明:x1x2x3都大于零;

(3)若处取得极值,且 试求此方程三个根两两不等时c的取值范围

解:(1)由已知得,比较两边系数,

(2)由c>0,得三数中或全为正数或一正二负。

若为一正二负,不妨设

=

这与b>0矛盾,所以全为正数,

(3)令有三个不等的实数根,则函数

有一个极大值和一个极小值,日极大值大于0,极小值小于0。

由已知,得有两个不等的实根

处取得极大值,在x= 处取得极小值。

要有三个不等的实数根,则必须

练习册系列答案
相关习题

科目:高中数学 来源:走向清华北大同步导读·高二数学(上) 题型:022

已知a,b,cR+,且a+b+c=1,则的最小值是________.

查看答案和解析>>

科目:高中数学 来源:上海市十一所实验示范校2007高三联考数学(文) 题型:044

已知二次函数f(x)=ax2+bx+c,(a,b,cR)满足:对任意实数x,都有f(x)≥x,且当x(1,3)时,有f(x)≤(x+2)2成立.

(1)证明:f(2)=2.

(2)若f(-2)=0,f(x)的表达式.

(3)设g(x)=f(x)-x x(0,∞),若g(x)图上的点都位于直线y=的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2­­+bx+c)cx,其中b,cR为常数

(Ⅰ)若b2>4(a-1),讨论函数f(x)的单调性;

(Ⅱ)若b2<4(c-1),且=4,试证:-6≤b≤2.

查看答案和解析>>

同步练习册答案