精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象与f(x)的图象右平移$\frac{π}{6}$个单位所得的图象重合,则ω的最小值为(  )
A.2B.3C.4D.5

分析 由题意将f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象与f(x)的图象右平移$\frac{π}{6}$个单位所得的图象重合,说明两个函数相位差是2π的整数倍,求出ω的值即可.

解答 解:∵将函数f(x)=sin(ωx+φ)的图象向左平移$\frac{π}{3}$个单位,所得的图象解析式为:y=sin(ωx+$\frac{π}{3}$ω+φ),
将函数f(x)的图象右平移$\frac{π}{6}$个单位所得的图象解析式为:y=y=sin(ωx-$\frac{π}{6}$ω+φ),
若所得图象重合,
∴$\frac{π}{3}$ω+$\frac{π}{6}$ω=2kπ,k∈Z,解得ω=4k,k∈Z,
∵ω>0,可解得ω的最小值为4.
故选:C.

点评 本题考查三角函数的周期、图象变换等基础知识,相位差是函数周期的整数倍,是本题解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数g(x)=log2(3x-1),f(x)=log2(x+1),
(1)求不等式g(x)≥f(x)的解集;
(2)在(1)的条件下求函数y=g(x)+f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足:${a}_{1}=\frac{1}{2},\frac{3(1+{a}_{n+1})}{1-{a}_{n}}=\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,anan+1<0(n≥1),数列{bn}满足:bn=an+12-an2(n≥1).
(Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)证明:数列{bn}中的任意三项不可能成等差数列.
(Ⅲ)证明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)+$\frac{n}{2n+1}$(n≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=f(x)的图象先向左平移$\frac{π}{4}$个单位,然后向上平移1个单位,得到函数y=2cos2x的图象,则f(x-$\frac{7π}{2}$)是(  )
A.-sin2xB.-2cosxC.2sinxD.2cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=sin2ωx在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上是减函数.则实数ω的取值范围是[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设g(x)=1-2x,f(g(x))=$\frac{1-{x}^{2}}{2}$(x≠0),则f($\frac{1}{2}$)=$\frac{15}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若执行如图伪代码时没有执行y←x2+1,则输入的x的取值范围是x>2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC. 过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3$\sqrt{5}$,BD=4则线段AF的长为$\frac{{5\sqrt{5}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若某多面体的三视图如图所示,则此多面体的表面积是(  )
A.6B.18C.8+3$\sqrt{2}$D.3+4$\sqrt{13}$

查看答案和解析>>

同步练习册答案