精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|x2-2x-15≤0},B={x|m-2<x<2m-3},且B⊆(A∩B),求实数m的取值范围.

分析 由题意,可先化简集合A,B⊆(A∩B)得到B⊆A,可对B按两类,B是空集与B不是空集求解实数m的取值范围.

解答 解:集合A={x|x2-2x-15≤0}=[-3,5],B={x|m-2<x<2m-3},且B⊆(A∩B),知B⊆A,
当B=∅时,m-2≥2m-3,解得m≤1,
当B≠∅时,则$\left\{\begin{array}{l}{m-2≥-3}\\{2m-3≤5}\\{m-2<2m-3}\end{array}\right.$,解得1<m≤4,
综上所述,实数m的取值范围为(-∞,4].

点评 本题考点集合关系中的参数取值问题,考查了一元二次不等式的解法,集合包含关系的判断,解题的本题,关键是理解B⊆A,由此得出应分两类求参数,忘记分类是本题容易出错的一个原因,在做包含关系的题时,一定要注意空集的情况,莫忘记讨论空集导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.利用计算机在区间(0,1)上产生两个随机数a和b,则关于x的方程x2+2ax+b=0有实根的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在△ABC中,内角A,B,C的对边分别是a,b,c,S是该三角形的面积,若向量$\overrightarrow m=({2sinB,cos2B}),\overrightarrow n=({2{{cos}^2}({\frac{π}{4}+\frac{B}{2}}),-1})$,且$\overrightarrow m•\overrightarrow n=\sqrt{3}$-1.
(1)求角B的大小;
(2)若B为锐角,a=6,S=6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合C={m|函数y=x2+(m-2)x+2为偶函数},集合D={y|y=$\frac{x}{x-1}$,2≤x≤3}.则C∩D=(  )
A.ϕB.{1}C.{2}D.[$\frac{3}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,则目标函数z=x2+y2+2x-2y+2的最小值为22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正三角形ABC的边长为2,则△ABC的水平放置直观图△A′B′C′的面积为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sinx,g(x)=2x+1.对于?x1∈[0,$\frac{7π}{6}$],都?x2∈[-m,m],使得f(x1)=g(x2).则m的取值范围是[0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x>1”是“x(x-1)>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),则($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{a}$=5.

查看答案和解析>>

同步练习册答案