精英家教网 > 高中数学 > 题目详情
16.设p:x≤k,q:1≤x<2,若p是q的必要条件,则实数k的取值范围是k≥2.

分析 根据必要条件的定义,结合p:x≤k,q:1≤x<2,可得实数k的取值范围.

解答 解:∵p:x≤k,q:1≤x<2,p是q的必要条件,
∴k≥2,
故答案为:k≥2

点评 本题考查的知识点是充要条件的定义,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cosxsin(x+$\frac{π}{6}$)-a,且x=-$\frac{π}{12}$是方程f(x)=0的一个解.
(1)求实数a的值及函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)若关于x的方程f(x)=b在区间(0,$\frac{7π}{6}$)上恰有三个不相等的实数根x1,x2,x3,直接写出实数b的取值范围及x1+x2+x3的取值范围(不需要给出解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“m<1”是“函数y=x2+$\frac{m}{x}$在[1,+∞)单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为平行四边形,AB=1,AC=$\sqrt{3}$,AD=2,M、N分别为棱PA、BC的中点.
(1)求证:MN∥平面PCD;
(2)若二面角P-CD-B等于30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题错误的是(  )
A.存在正数x0,当x>x0时,2x>x3B.存在正数x0,当x>x0时,x>lnx
C.?x>2,2x>x2D.?x>2,x3>$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α的终边过点($\sqrt{5}$,-2),则sin(π+α)等于(  )
A.-$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn=n(2n+1),则a2=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点
(1)若PD=1,求异面直线PB和DE所成角的余弦值;
(2)若四棱锥P-ABCD的体积为$\frac{8}{3}$,求四棱锥P-ABCD全面积.

查看答案和解析>>

同步练习册答案