精英家教网 > 高中数学 > 题目详情

【题目】求满足下列条件的曲线的方程:

1)离心率为,长轴长为6的椭圆的标准方程

2)与椭圆有相同焦点,且经过点的双曲线的标准方程.

【答案】1 2

【解析】

(1)根据题意,由椭圆的几何性质可得ac的值,计算可得b的值,讨论椭圆焦点的位置,求出椭圆的标准方程,即可得答案;

(2)根据题意,求出椭圆的焦点坐标,进而可以设双曲线的方程为,分析可得,解可得ab的值,即可得答案.

解:(1)根据题意,要求椭圆的长轴长为6,离心率为,

,,

解可得:,

,

若椭圆的焦点在x轴上,其方程为,

若椭圆的焦点在y轴上,其方程为,

综合可得:椭圆的标准方程为

2)根据题意,椭圆的焦点为,

故要求双曲线的方程为,且,

则有,

又由双曲线经过经过点,则有,,

联立可得:,

故双曲线方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线处的切线斜率为0

求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,左、右焦点分别为,离心率为,点为线段的中点.

)求椭圆的方程.

)若过点且斜率不为的直线与椭圆交于两点,已知直线相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数且处取得极值.

1时,求的单调区间;

2上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个同样大小的球,,,两两相切,点是球上的动点,则直线与直线所成角的余弦值的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有下列四个命题:

:若,则

:若,则

:“”是“为奇函数”的充要条件;

:“等比数列中,”是“等比数列是递减数列”的充要条件.

其中,真命题的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

1

5

2

n

3

30

p

4

20

5

10

合计

100

1)求频率分布表中np的值,完善频率分布直方图并估计该组数据的中位数保留l位小数

2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,学校决定从这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 部分图象如图所示.

(1)求的最小正周期及解析式;

(2)设,求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案