精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函数f(x)=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
(Ⅰ)求函数f(x)零点;
(Ⅱ)若△ABC的三内角A、B、C的对边分别是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范围.

分析 (Ⅰ)先化简函数,再求函数f(x)零点;
(Ⅱ)求出A,C,利用正弦定理,边化角,利用三角函数知识求$\frac{b+c}{a}$的取值范围.

解答 解:(Ⅰ)由条件可知:$\overrightarrow a•\overrightarrow b=2cosx•sin(x-\frac{π}{6})+2sinx•cos(x-\frac{π}{6})$
=$2cosx•(sinxcos\frac{π}{6}-cosxsin\frac{π}{6})+2sinx•(cosxcos\frac{π}{6}+sinxsin\frac{π}{6})$
=$\sqrt{3}sinxcosx-{cos^2}x+\sqrt{3}sinxcosx+{sin^2}x$=$\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$…(3分)
∴$f(x)=cos<\overrightarrow a,\overrightarrow b>=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a|•|\overrightarrow b|}=\frac{{2sin(2x-\frac{π}{6})}}{2}=sin(2x-\frac{π}{6})$…(4分)
所以函数f(x)零点满足$sin(2x-\frac{π}{6})=0$,得$x=\frac{kπ}{2}+\frac{π}{12}$,k∈Z.              …(6分)
(Ⅱ)由正弦定理得$\frac{b+c}{a}=\frac{sinB+sinC}{sinA}$
由(Ⅰ)$f(x)=sin(2x-\frac{π}{6})$,而f(A)=2,得$sin(2A-\frac{π}{6})=1$
∴$2A-\frac{π}{6}=2kπ+\frac{π}{2},k∈Z$,又A∈(0,π),得$A=\frac{π}{3}$…(8分)
∵A+B+C=π,∴$C=\frac{2π}{3}-B$代入上式化简得:$\frac{b+c}{a}=\frac{{sinB+sin(\frac{2π}{3}-B)}}{sinA}=\frac{{\frac{3}{2}sinB+\frac{{\sqrt{3}}}{2}cosB}}{sinA}=\frac{{\sqrt{3}sin(B+\frac{π}{6})}}{sinA}=2sin(B+\frac{π}{6})$…(10分)
又在△ABC中,有$0<B<\frac{2π}{3}$,∴$\frac{π}{6}<B+\frac{π}{6}<\frac{5π}{6}$,则有$\frac{1}{2}<sin({B+\frac{π}{6}})≤1$
即:$1<\frac{b+c}{a}≤2$…(12分)

点评 本题考查三角函数与向量知识的综合,考查正弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.请根据如表提供的数据(其中$\stackrel{∧}{b}$=0.7,y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$),用最小二乘法求出y关于x的线性回归方程y=0.7x+0.35.
x3456
y2.5344.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=2an-n.
(Ⅰ)证明数列{an+1}是等比数列,求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为$\frac{1}{2}$,$\frac{1}{2}$,$\frac{2}{3}$,且每个电子元件能否正常工作相互独立.若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元.
(1)求集成电路E需要维修的概率;
(2)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用.求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(4,3)$,若向量λ$\overrightarrow a+μ\overrightarrow b$与向量$\overrightarrow c=(1,-1)$垂直,则λ+μ=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-1,2),B(2,3),若直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是(  )
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,a1=a,an+1=3an+8n+6,若{an)为递增数列,则实数a的取值范围为(-7,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“m=1”是“直线x-y=0和直线x+my=0互相垂直”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为$\frac{\sqrt{3}}{2}$,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,|PQ|=10.求直线l的方程.

查看答案和解析>>

同步练习册答案