精英家教网 > 高中数学 > 题目详情

【题目】某班学生中喜爱看综艺节目的有18人,体育节目的有27人,时政节目的有9人,现采取分层抽样的方法从这些学生中抽取6名学生.

(Ⅰ)求应从喜爱看综艺节目,体育节目,时政节目的学生中抽取的学生人数;

(Ⅱ)若从抽取的6名学生中随机抽取2人分作一组,

1)列出所有可能的结果;

2)求抽取的2人中有1人喜爱综艺节目1人喜爱体育节目的概率.

【答案】(Ⅰ)231(Ⅱ)(1)见解析(2

【解析】

(Ⅰ)根据抽样比计算各层抽取的人数;

(Ⅱ)(1)列举法求出所有的可能结果;(2)由(1)计算所有满足条件的随机事件的个数,再计算概率.

(Ⅰ)一共有18+27+9=54(人)

抽样比是

所以喜欢看综艺节目的有(人),体育节目的有(人),

时政节目的有(人)

应从喜爱看综艺节目,体育节目,时政节目的学生中抽取的学生人数分别是2,3,1.

(Ⅱ)(1)记喜爱综艺类节目的两人为,记喜爱体育类节目的三人为,记喜爱时政类节目的一人为,则任取两人的所有情况为:

15

2)有1人喜爱综艺节目1人喜爱体育节目包含,共6种情况,则抽取的2人中有1人喜爱综艺节目1人喜爱体育节目的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

……

(1)求第2行和第3行的通项公式

(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;

(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线轴相交于点,设坐标原点为.

1)求双曲线的方程,并求出点的坐标(用表示);

2)设点关于轴的对称点为,直线轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

3)若过点的直线与双曲线交于两点,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是海岸线OMON上两个码头,海中小岛有码头Q到海岸线OMON的距离分别为,测得,以点O为坐标原点,射线OMx轴的正半轴,建立如图所示的直角坐标系,一艘游轮以小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q.

1)问游轮自码头A沿方向开往码头B共需多少分钟?

2)海中有一处景点P(设点P平面内,,且),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)作出函数的图像;

2)根据(1)所得图像,填写下面的表格:

性质

定义域

值域

单调性

奇偶性

零点

3)关于的方程恰有6个不同的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,短轴的一个端点的距离等于焦距.

1)求椭圆的标准方程;

2)设是四条直线所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;

3)过点的直线与椭圆交于不同的两点,且满足△与△的面积的比值为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,实数

1)设,判断函数上的单调性,并说明理由;

2)若不等式恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,关于的方程,给出下列结论

①存在这样的实数,使得方程有3个不同的实根

②不存在这样的实数,是的方程有4个不同的实根

③存在这样的实数,是的方程有5个不同的实根

④不存在这样的实数,是的方程有6个不同的实根

其中正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案