精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

)求的单调区间;

)若在上存在,使得成立,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)函数的单调区间与导数的符号相关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式 上有解,那么在上, .但上的单调性不确定,故需分 三种情况讨论.

解析:(1)

①当时,在 上单调递增;

②当时,在;在;所以上单调递减,在上单调递增.

综上所述,当时, 的单调递增区间为,当时, 的单调递减区间为,单调递增区间为.

(2)若在上存在,使得成立,则上的最小值小于.

①当,即时,由(1)可知上单调递增, 上的最小值为,由,可得

②当,即时,由(1)可知上单调递减, 上的最小值为,由,可得

③当,即时,由(1)可知上单调递减,在上单调递增, 上的最小值为,因为,所以,即,即,不满足题意,舍去.

综上所述,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
1)若曲线在点处的切线垂直于轴,求实数的值;

2时,求函数的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点,则下列结论中正确结论的序号是__________

②直线与平面所成角的正弦值为定值

③当为定值,则三棱锥的体积为定值;

④异面直线所成的角的余弦值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 .

(1)当时,讨论的单调性;

(2)若函数有两个极值点,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的导函数为

若直线与曲线恒相切于同一定点,求的方程;

⑵ 若,求证:当时, 恒成立;

⑶ 若当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,ABBC,E、F分别为A1C1和BC的中点

(1)求证:平面ABE平面B1BCC1

(2)求证:C1F//平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=(1+x)m+(1+2x)n(mn∈N*)的展开式中x的系数为11.

(1)求x2的系数取最小值时n的值;

(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

同步练习册答案