精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为60°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,则$|\overrightarrow{OC}|$=2$\sqrt{7}$.

分析 由平面向量数量积的定义求出$\overrightarrow{OA}$•$\overrightarrow{OB}$,再求出模长|$\overrightarrow{OC}$|.

解答 解:向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为60°,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,
所以$\overrightarrow{OA}$•$\overrightarrow{OB}$=2×2×cos60°=2,
所以${\overrightarrow{OC}}^{2}$=(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)2
=4${\overrightarrow{OA}}^{2}$+4$\overrightarrow{OA}$•$\overrightarrow{OB}$+${\overrightarrow{OB}}^{2}$
=4×22+4×2+22
=28,
所以|$\overrightarrow{OC}$|=$\sqrt{28}$=2$\sqrt{7}$.
故答案为:2$\sqrt{7}$.

点评 本题考查了平面向量的数量积与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知动圆过定点F(1,0),且与定直线l:x=-1相切.
(1)求动圆圆心的轨迹C的方程;
(2)直线l与C相交所得弦AB中点为(2,1),O为坐标原点,求$\overrightarrow{OA}•\overrightarrow{OB}$及$|{\overrightarrow{AB}}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=3an+1,数列{an}的前n项和为Sn,则S2016=(  )
A.$\frac{{3}^{2015}-2016}{2}$B.$\frac{{3}^{2016}-2016}{2}$C.$\frac{{3}^{2015}-2017}{2}$D.$\frac{{3}^{2016}-2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值为(  )
A.m=-1或m=2B.m=2C.m=-1D.m=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若y=f(x)的图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),然后把图象向左平移$\frac{π}{2}$个单位,再把图象上所有点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变),这样得到的图象与y=sinx的图象相同,则f(x)等于(  )
A.$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{2}$)B.2sin($\frac{x}{2}$-$\frac{π}{2}$)C.$\frac{1}{2}$sin(2x-$\frac{π}{2}$)D.2sin(2x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-2$\sqrt{3}$,0),上下顶点分别为A,B,已知△AFB是等边三角形.
(1)求椭圆C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某电视竞赛截面设置了先后三道程序,优、良、中,若选手在某道程序中获得“中”,则该选手在本道程序中不通过,且不能进入下面的程序,选手只有全部通过三道程序才算通过,某选手甲参加了该竞赛节目,已知甲在每道程序中通过的概率为$\frac{3}{4}$,每道程序中得优、良、中的概率分别为p1,$\frac{1}{2}$,p2
(1)求甲不能通过的概率;
(2)设ξ为在三道程序中获优的次数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{|lgx|,0<x≤10}\\{-x+11,x>10}\end{array}}$若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,10)B.(5,6)C.(10,11)D.(20,22)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα=$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案