【题目】设集合A={x|0≤x≤2},B={y|1≤y≤2},在下图中能表示从集合A到集合B的映射的是( )
A.
B.
C.
D.
【答案】D
【解析】解:在A中,当0<x<1时,y<1,所以集合A到集合B不成映射,故A不成立;
在B中,1≤x≤2时,y<1,所以集合A到集合B不成映射,故B不成立;
在C中,0≤x≤1时,任取一个x值,在0≤y≤2内,有两个y值与之相对应,所以构不成映射,故C不成立;
在D中,0≤x≤1时,任取一个x值,在0≤y≤2内,总有唯一确定的一个y值与之相对应,故D成立.
故选:D
【考点精析】根据题目的已知条件,利用映射的相关定义的相关知识可以得到问题的答案,需要掌握对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象;注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数.
科目:高中数学 来源: 题型:
【题目】已知为直角坐标系的坐标原点,双曲线 上有一点(),点在轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为, ,若平行四边形的面积为1,则双曲线的标准方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},从M到N有四种对应如图所示:
其中能表示为M到N的映射关系的有(请填写符合条件的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:=1(a>b>0)的焦距为2 , 且该椭圆经过点(,).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程y= x+ ,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注: = , = ﹣ )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com