精英家教网 > 高中数学 > 题目详情

【题目】【2017南通一模19已知函数

(1)当时,求函数的最小值;

(2)若,证明:函数有且只有一个零点;

(3)若函数又两个零点,求实数的取值范围

【答案】见解析

【解析】解:(1)当时,

所以

=0,得

时,<0,当时,>0,

所以函数上单调递减,在上单调递增,

所以当时,有最小值

(2)由,得:

所以当时,,函数上单调递减,

所以当时,函数上最多有一个零点,

又当时,

所以当时,函数上有零点,

综上,当时,函数有且只有一个零点;

(3)由(2)知:当时,函数上最多有一个零点,

因为函数有两个零点,所以,9分

,得:

,因为

所以函数上有且只有一个零点,设为

时,<0,<0,当时>0,>0,

所以函数上单调递减,在上单调递增,

要使得函数上有两个零点,只需要函数的最小值

,又因为

消去得:

又因为上单调递增,且,所以>1,

,因为,所以

所以2上单调递增,所以,13分

以下验证当时,函数有两个零点。

时,,所以

因为,且

所以函数上有一个零点,

又因为(因为),且

所以函数上有一个零点,

所以当时,函数上有两个零点。

综上,实数的取值范围是。1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017江西上饶联考】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

1及基地的预期收益;

2若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了增强环保意识,我校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:

优秀

非优秀

总计

男生

40

20

60

女生

20

30

50

总计

60

50

110


(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为 ,现在环保测试中优秀的同学中选3人参加预选赛,若随机变量X表示这3人中通过预选赛的人数,求X的分布列与数学期望.
附:K2=

P(K2≥k)

0.500

0.400

0.100

0.010

0.001

k

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn=n2 , {bn}为等比数列,且a1=b1 , b2(a2﹣a1)=b1
(1)求数列{an},{bn}的通项公式.
(2)设cn=anbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:直线y=kx+3与圆x2+y2=1相交于A,B两点;命题q:曲线=1表示焦点在y轴上的双曲线,若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南京市、盐城市2017届高三年级第次模拟(本小题满分16分)

如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:=1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(Ax轴下方)

(1)求椭圆C的标准方程;

(2)过点O且平行于l的直线交椭圆C于点MN,求的值;

(3)记直线ly轴的交点为P.若求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c(其中b,c为实常数).
(1)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为﹣1,求函数y=f(x)的解析式;
(2)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.
(3)记集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求证:B≠
②若A=,判断B是否也为空集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扬州市2016—2017学年度第一学期期末检测(本小题满分14分)

如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在ADE区域内参观.在AE上点P处安装一可旋转的监控摄像头,为监控角,其中M、N在线段DE(含端点)上,且点M在点N的右下方.经测量得知:AD=6米,AE=6米,AP=2米,.记(弧度),监控摄像头的可视区域PMN的面积S平方米.

(1)求S关于的函数关系式,并写出的取值范围;(参考数据:

(2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.

查看答案和解析>>

同步练习册答案