精英家教网 > 高中数学 > 题目详情
设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足||=||,则的值为( )
A.
B.2
C.
D.1
【答案】分析:利用||=||,可知∠F1PF2=90°,设|PF1|=m,|PF2|=n,|F1F2|=2c,不妨设m>n,可得m2+n2=4c2,求出,再求出平方倒数的和,即可得到结论.
解答:解:设|PF1|=m,|PF2|=n,|F1F2|=2c,
不妨设m>n,由||=||,可知∠F1PF2=90°
∴m2+n2=4c2


=
故选A.
点评:本题考查圆锥曲线的共同特征,考查圆锥曲线的离心率,正确求出离心率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0
,则
e
2
1
+
e
2
2
(e1e2)2
的值为(  )
A、
1
2
B、1
C、2
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设e1.e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
.
PF1
.
PF2
=0,则
1
e
2
1
+
1
e
2
2
的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|
F1
+
PF2
|=|
F1F2
|,则
e1e2
e
2
1
+
e
2
2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则
e
2
1
+
e
2
2
(e1e2)2
的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•聊城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则4e12+e22的最小值为(  )

查看答案和解析>>

同步练习册答案