精英家教网 > 高中数学 > 题目详情
20.已知二次函数f(x)满足f(0)=1,f(x+1)-f(x)=2x.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(2x)在区间[-1,1]上的最大值与最小值.

分析 (Ⅰ)设f(x)=ax2+bx+c,结合f(0)=1,f(x+1)-f(x)=2x,可得f(x)的解析式;
(Ⅱ)令2x=t,-1≤x≤1,结合二次函数的图象和性质,可得f(2x)在区间[-1,1]上的最大值与最小值.

解答 (本小题满分12分)
解:(Ⅰ)设f(x)=ax2+bx+c,-----------------------(1分)
由f(0)=1,得c=1,----------------------------------(2分)
由f(x+1)-f(x)=2x,得$\left\{\begin{array}{l}f(1)=f(0)=1\\ f(2)=f(1)+2=3\end{array}\right.$
解得a=1,b=-1--------------------------------------(5分)
所以,f(x)=x2-x+1--------------------------------(6分)
(Ⅱ)令2x=t,-1≤x≤1,
∴$\frac{1}{2}≤t≤2$------------------------------(8分)
$f(t)={t^2}-t+1={(t-\frac{1}{2})^2}+\frac{3}{4}(\frac{1}{2}≤t≤2)$---------------------------(10分)
所以${[f(t)]_{min}}=f(\frac{1}{2})=\frac{3}{4}$,此时x=-1;
[f(t)]max=f(2)=3,此时x=1------------------------------(12分)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若l∥α,m∥α,则l∥mB.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥mD.若l⊥α,l∥m,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在坐标原点,一个焦点的坐标为$(\sqrt{3},0)$,椭圆C经过点P$(1,\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程; 
(2)设直线y=kx+b与椭圆C交于A,B两点,若|AB|=2,△AOB的面积S=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$与单位向量(1,0)所成的角为θ,且$cosθ=-\frac{4}{5}$,则m的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}的前n项和为Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,则a6=$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有(  )
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+4x-1.
(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{f({x}_{1})+f({x}_{2})}{2}$的大小;
(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,-3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

同步练习册答案