【题目】(1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
(2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
(3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
(4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
【答案】(1)1560种(2)65种 (3)10种 (4)2种
【解析】
(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个不同的箱子,即可得到结论;
(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个相同的箱子,即可得到结论;
(3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,利用插板法;
(4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则只有两种结果.
解:(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个不同的箱子,故不同的方法共有(种)
(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个相同的箱子,故不同的方法共有(种)
(3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,则采用插板法,在个空中插入块板,则不同的方法共有(种)
(4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则这个小球,只有两种结果,即两个在一个箱子中,或两个小球分别在一个箱子中,故只有种放法.
科目:高中数学 来源: 题型:
【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有名维修工人.
(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参照附表,得到的正确的结论是( )
A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”
B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a+bx-a-ab(a≠0),当时,f(x)>0;当时,f(x)<0.
(1)求f(x)在内的值域;
(2)若方程在有两个不等实根,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),,为曲线上的一动点.
(I)求动点对应的参数从变动到时,线段所扫过的图形面积;
(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),直线的方程为.
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;
(2)在(1)的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com