精英家教网 > 高中数学 > 题目详情

【题目】1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?

2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?

3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?

4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?

【答案】11560种(265 310 42

【解析】

16个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个不同的箱子,即可得到结论;

26个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个相同的箱子,即可得到结论;

36个相同的小球放入4个不同的箱子,每个箱子至少一个小球,利用插板法;

4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则只有两种结果.

解:(16个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:22113111;再放入4个不同的箱子,故不同的方法共有(种)

26个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:22113111;再放入4个相同的箱子,故不同的方法共有(种)

36个相同的小球放入4个不同的箱子,每个箱子至少一个小球,则采用插板法,在个空中插入块板,则不同的方法共有(种)

4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则这个小球,只有两种结果,即两个在一个箱子中,或两个小球分别在一个箱子中,故只有种放法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.

(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

参照附表,得到的正确的结论是(  )

A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”

B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”

C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”

D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数时取得极值,求实数的值;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=a+bxaaba≠0),当时,fx>0;当时,fx<0

1)求fx)在内的值域;

2)若方程有两个不等实根,c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥中,底面是边长为2的等边三角形,且,点是棱上的动点.

(I)求证:平面平面

(Ⅱ)当线段最小时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的方程为

(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;

(2)在(1)的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以为焦点的椭圆过点.

1)求椭圆方程.

2)设椭圆的左顶点为,线段的垂直平分线交椭圆于两点,求的面积.

查看答案和解析>>

同步练习册答案