精英家教网 > 高中数学 > 题目详情
16.如果a<b<0,则下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2<bc2C.a2<b2D.a3<b3

分析 根据a、b的范围,取特殊值带入判断即可.

解答 解:∵a<b<0,
不妨令a=-2,b=-1,
显然A、B、C不成立,D成立,
故选:D.

点评 本题考查了不等式的性质,考查特殊值法的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,则三棱锥P-ABC的外接球的表面积为(  )
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,则n=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥V-ABCD的底面是直角梯形,VA⊥面ABCD,AD∥BC,AD⊥CD,VA=AD=CD=$\frac{1}{2}$BC=a,点E是棱VA上不同于A,V的点.
(1)求证:无论点E在VA如何移动都有AB⊥CE;
(2)设二面角A-BE-D的大小为α,直线VC与平面ABCD所成的角为β,试确定点E的位置使$tanαtanβ=\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设 $a=ln\frac{1}{2},b={2^{\frac{1}{e}}},c={e^{-2}}$,则(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E为线段AC上的动点,则$\overrightarrow{AC}•\overrightarrow{BE}$的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,则∠A=105°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥E-ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.
求证:(1)直线MN∥平面EBC;
(2)直线EA⊥平面EBC.

查看答案和解析>>

同步练习册答案