精英家教网 > 高中数学 > 题目详情
16.下列选项中元素的全体可以组成集合的是(  )
A.蓝溪中学高二年个子高的学生B.蓝溪中学高职班的学生
C.蓝溪中学高二年学习好的学生D.校园中茂盛的树木

分析 由集合元素的特征可知:集合的运算具有确定性、互异性、无序性,据此即可选出.

解答 解:A.蓝溪中学高二年个子高的学生,其中“个子高”不具有确定性,因此不能组成集合;
B.蓝溪中学高职班的学生是确定的,因此可以组成一个集合.
C.蓝溪中学高二年学习好的学生,其中“学习好”不具有确定性,因此不能组成集合;
D.校园中茂盛的树木,其中“茂盛的”不具有确定性,因此不能组成集合;
故选:B.

点评 本题考查了集合的含义,熟练集合元素的特征是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,已知圆O:x2+y2=4与轴正半轴交于点P,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过两点A,B且以l为准线.
 (1)当点S在圆周上运动时,求证:抛物线的焦点Q始终在某一椭圆C上,并求出该椭圆C的方程;
(2)设M.N是(1)中椭圆C上除短轴端点外的不同两点,且$\overrightarrow{PM}$=t$\overrightarrow{PN}$(t∈R),问:△MON的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.四棱锥P-ABCD的五个顶点都在半径为$\sqrt{3}$的半球面上,底面ABCD是边长为2的正方形,则顶点P到平面ABCD距离的最大值为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C的极坐标方程ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=0,则圆C的半径为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.855°转化为弧度数为$\frac{59}{12}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(a+b+c)(b+c-a)=3bc且sinA=2sinBcosC,则△ABC是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{OA}$=(λ,5),$\overrightarrow{O{B}_{n}}$=(n($\frac{2}{3}$)n,0)(n∈N*),$\overrightarrow{O{C}_{k}}$=(0,k)(k∈N*),an=$\overrightarrow{OA}$•$\overrightarrow{O{B}_{n}}$,bk=|$\overrightarrow{OA}$-$\overrightarrow{O{C}_{k}}$|2,λ>0.
(1)求数列{an},{bk}的通项公式;
(2)若对任意n,k∈N*,总有bk-an>$\frac{1}{9}$成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当a为何值时,直线l与圆C相切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.执行如图所示的程序框图,则输出S=16.

查看答案和解析>>

同步练习册答案