精英家教网 > 高中数学 > 题目详情
6.过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,过点A和此抛物线顶点O的直线与准线交于点M,设A(x1,y1),B(x2,y2).求证:
(1)y1y2=-p2,x1x2=$\frac{{p}^{2}}{4}$;
(2)直线MB平行于此抛物线的对称轴.

分析 (1)设直线为x-$\frac{p}{2}$=ky,即x=ky+$\frac{p}{2}$,代入抛物线y2=2px,得到y2-2pky-p2=0,由韦达定理得结论;
(2)证明M,B的纵坐标相同即可.

解答 证明:(1)抛物线y2=2px的焦点坐标为($\frac{p}{2}$,0)
设直线为x-$\frac{p}{2}$=ky,即x=ky+$\frac{p}{2}$,
代入抛物线y2=2px得:
y2=2p(ky+$\frac{p}{2}$),即y2-2pky-p2=0
由韦达定理得:y1•y2=-p2;x1x2=$\frac{{{y}_{1}}^{2}}{2p}$•$\frac{{{y}_{2}}^{2}}{2p}$=$\frac{{p}^{2}}{4}$;
(2)直线OA的方程为y=$\frac{{y}_{1}}{{x}_{1}}$x,x=-$\frac{p}{2}$时,y=-$\frac{{y}_{1}}{{x}_{1}}$•$\frac{p}{2}$=-y2
∴直线MB平行于此抛物线的对称轴.

点评 本题考查直线与抛物线之间的关系,利用方程联立得到方程,根据根和系数的关系得到结论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数y=f(x)为奇函数,y=g(x)为偶函数,且F(x)=f(x)+g(x)=$\frac{1}{x+1}$,则f(x)=$\frac{x}{{x}^{2}-1}$,g(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)在定义域[-1,1]上既是奇函数又是减函数.
(1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)](x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的奇函数f(x)满足对任意的x有f(x-1)=f(4-x)且f(x)=x,x∈(0,$\frac{3}{2}$),则f(2015)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的函数,?x∈R都有f(x+6)=f(x)+2f(3),若函数f(x+1)的图象关于直线x+1=0对称,且f(0)=2016,则f(2016)=(  )
A.0B.-2016C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在“①(M∩P)⊆P,②(M∪P)⊆P,③(M∩P)⊆(M∪P),④若M⊆P,则M∩P=M”这四个结论中,正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos(2x-$\frac{4π}{3}$)+4cos2x-1,且f($\frac{α}{2}$-$\frac{π}{6}$)=-$\frac{1}{5}$,求sin(α+$\frac{3π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=kx+3与圆C:(x-3)2+(y-2)2=4相交于M,N两点,若∠MCN<90°,则k的值为{k|k<-$\frac{1}{7}$或k>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组函数,不能表示同一函数的是(  )
A.f(x)=sin2x,g(x)=2sinxcosxB.f(x)=cos2x,g(x)=cos2x-sin2x
C.f(x)=2cos2x-1,g(x)=1-2sin2xD.f(x)=tan2x,g(x)=$\frac{2tanx}{1-ta{n}^{2}x}$

查看答案和解析>>

同步练习册答案