精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数是奇函数,求实数的值;

2)若关于的方程在区间上有解,求实数的取值范围.

【答案】1;(2.

【解析】

1)求出函数的解析式,由奇函数的定义得出,结合指数运算可求出实数的值;

2)由(1)知,函数为奇函数且为减函数,由,得出,可得出关于的方程在区间上有解,构造函数,将问题转化为二次函数在区间上有零点,结合二次函数零点分布求出实数的取值范围.

(1),函数的定义域为

由于函数是奇函数,则,即

,因此,

2是奇函数,

则方程等价为

,即

函数在定义域上是单调函数,在区间上有解,

在区间上有解.

构造函数.

①若函数在区间有且只有一个零点,

,解得.

时,,令,得,不合乎题意;

时,,令,得,不合乎题意;

②若函数在区间有两个零点,则,此时.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,抛掷一蓝、一黄两枚质地均匀的正四面体骰子,分别观察底面上的数字.

1)用表格表示试验的所有可能结果;

2)列举下列事件包含的样本点:A=“两个数字相同B=“两个数字之和等于5”C=“蓝色骰子的数字为2”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数).

(Ⅰ)当时,求不等式的解集;

(Ⅱ)求证:,并求等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果A产品的利润为300/吨,B产品的利润为200/吨,设公司计划一天内安排生产A产品x吨,B产品y.

(I)用x,y列出满足条件的数学关系式,并在下面的坐标系中画出相应的平面区域;

(II)该公司每天需生产A,B产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a >2.

(I)讨论函数f(x)的单调性;

(II)若对于任意的,恒有,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数y4cos2x4sinxcosx1x∈R).

1)求出函数的最小正周期;

2)求出函数的最大值及其相对应的x值;

3)求出函数的单调增区间;

4)求出函数的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)记的导函数,如果是函数的两个零点,且满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则 ).

A. B. C. D.

查看答案和解析>>

同步练习册答案