精英家教网 > 高中数学 > 题目详情
在棱长为2的正方体ABCD-A1B1C1D1中,M为AB中点.
(1)求直线B1C与DM所成角的余弦; 
(2)(文)求点M到平面DB1C的距离;
(3)(理)求二面角M-B1C-D的大小.
分析:(1)连接A1D,由几何体的结构特征可得:A1D∥B1,可得B1C与DM所成角与A1D与DM所成角相等,再利用解三角形的有关知识求出异面直线所成的角.
(2)设点M到平面DB1C的距离为h,再根据等体积法即利用VB1-MCD=  VM-B1CD,求出点M到平面DB1C的距离.
(3)取B1C的中点F,B1D的中点G,连接MF,MG,由几何体的结构特征可得:MF⊥B1C,GF⊥B1C,进而得到∠MFG是二面角M-B1C-D的平面角,再利用解三角形的有关知识求出二面角的平面角.
解答:解:(1)连接A1D,由几何体的结构特征可得:A1D∥B1
精英家教网
所以B1C与DM所成角与A1D与DM所成角相等.
连接A1M,
因为正方体ABCD-A1B1C1D1的棱长为a,
所以A1D=2
2
A1M=DM=
5

∴在△A1MD中由余弦定理可得:cos∠A1DM=
A1D2+A1M2 -DM2
2•A1D•DM
=
10
5

∴直线B1C与DE所成角的余弦值是
10
5

(2)设点M到平面DB1C的距离为h,
因为正方体ABCD-A1B1C1D1的棱长为2,
所以CB1=2
2

所以SB1CD=
1
2
×CD×B1C
=2
2
S△CDM=
1
2
×CD×2=2
,B1到平面ABCD的距离为2,
又因为VB1-MCD=  VM-B1CD,即
1
3
×S△CDM×2 =
1
3
×SB1CD×d

所以h=
2

所以点M到平面DB1C的距离为
2

(3)取B1C的中点F,B1D的中点G,连接MF,MG,
因为M为AB中点,
所以MC=MB1
所以MF⊥B1C;
因为CD⊥B1C,GF∥CD,
所以GF⊥B1C,
所以∠MFG是二面角M-B1C-D的平面角.
因为正方体ABCD-A1B1C1D1的棱长为2,
所以在△MFG中,GF=1,MF=
3
,MG=
2

所以根据勾股定理可得△MFG是直角三角形,
所以 cos∠MFG=
FG
MF
=
3
3

所以二面角M-B1C-D的大小为arccos
3
3
点评:本题主要考查点到平面的距离,解决此类问题一般利用等体积的方法求出答案,本题还考查的异面直线的夹角与二面角的平面角,解决空间角的关键是结合几何体的结构特征与空间角的定义正确的作出空间角,求空间角的步骤是:①作角,②证明此角即为所求角,③利用解三角形的有关知识求角,此题属于中档题,考查学生的空间想象能力与推理论证的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)如图,在棱长为2的正方体ABCD-A'B'C'D'中,E,F分别是A'B'和AB的中点,求异面直线A'F与CE所成角的大小 (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:黑龙江省鹤岗一中2010-2011学年高一下学期期末考试数学理科试题 题型:013

在棱长为2的正方体A中,点E,F分别是棱AB,BC的中点,则点到平面EF的距离是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案