精英家教网 > 高中数学 > 题目详情

函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为 ________.

3
分析:因为对称轴固定,区间不固定,须分轴在区间左边,轴在区间右边,轴在区间中间三种情况讨论,找出g(t)的表达式,再求其最大值.
解答:因为f(x)=-x2+4x-1开口向下,对称轴为x=2,所以须分以下三种情况讨论
①轴在区间右边,t+1≤2?t≤1,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+4t-1.
故g(t)=-t2+4t-1.
②轴在区间中间,t<2<t+1?1<t<2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(2)=-22+4×2-1=3.
故g(t)=3.
③轴在区间左边,t≥2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+2t+2.
故g(t)=-t2+2t+2.
∴g(t)=
∴g(t)的最大值为3
故答案为;3
点评:本题的实质是求二次函数的最值问题,关于给定解析式的二次函数在不固定闭区间上的最值问题,一般是根据对称轴和闭区间的位置关系来进行分类讨论,如轴在区间左边,,轴在区间右边,轴在区间中间,最后在综合归纳得出所需结论
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案