精英家教网 > 高中数学 > 题目详情
如图,BC是Rt△ABC的斜边,AP⊥平面ABC,连接PB、PC,作PD⊥BC于D,连接AD,则图中共有直角三角形______个.
∵AP⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
又PD⊥BC于D,连接AD,PD∩PA=A,
∴BC⊥平面PAD,AD?平面PAD,
∴BC⊥AD;
又BC是Rt△ABC的斜边,
∴∠BAC为直角,
∴图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.
故答案为:8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知如图所示,PA、PO分别是平面α的垂线、斜线,AO是PO在平面α内的射影,且直线a?α,a⊥PO.求证:a⊥AO.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC所在平面外一点P,分别连接PA、PB、PC,则这四个三角形中直角三角形最多有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.
(1)求证:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱锥C-PAB的体积与此三棱锥的外接球(即点P、A、B、C都在此球面上)的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求证:EO⊥平面BDF;
(II)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,PA⊥平面ABCD,AC、BD交于点O.
(1)已知:PA=
2
,求证:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,且∠ADC=60°,M为PB的中点,
(1)求证:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求证:平面CDM⊥平面PAB.

查看答案和解析>>

同步练习册答案