【题目】在如图所示的几何体中,四边形是菱形,是矩形,,,, ,为的中点.
(1)平面平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长度;若不存在,请说明理由.
【答案】(1)见解析;(2)
【解析】
(1)由四边形为矩形,所以,再由勾股定理,得到,利用线面垂直的判定定理,证得平面,进而得到平面平面.
(2)建立空间直角坐标系,求得平面的法向量为,又由平面的法向量,利用向量的夹角公式,即可求解,得到结论.
(1)证明:由题意知,四边形为矩形,所以,
又∵四边形为菱形,为中点,
所以,,,所以,所以,
又,所以平面,又平面,
所以平面平面
(2)假设线段上存在点,使二面角的大小为,在上取一点,
连接,.
由于四边形是菱形,且,是的中点,可得.
又四边形是矩形,平面平面,∴平面,
所以建立如图所示的空间直角坐标系
则,,,,
则,,设平面的法向量为,
则,∴,令,则,
又平面的法向量,
所以,解得,
所以在线段上存在点,使二面角的大小为,此时.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+m|+|2x-1|.
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:
①AD∥平面SBC;
②;
③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;
④与平面SCD所成的角为45°.
其中正确结论的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点 ,且离心率为.设为椭圆的左、右顶点,P为椭圆上异于的一点,直线分别与直线相交于两点,且直线与椭圆交于另一点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:直线与的斜率之积为定值;
(Ⅲ)判断三点是否共线,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com