精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上为减函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

(1)增区间,减区间;(2);(3).

解析试题分析:(1)将代入函数解析式,直接利用导数求出函数的单调递增区间和递减区间;(2)将条件“在区间上为减函数”等价转化为“不等式在区间上恒成立”,结合参数分离法进行求解;(3)构造新函数,将“不等式在区间上恒成立”等价转化为“”,利用导数结合函数单调性围绕进行求解,从而求出实数的取值范围.
试题解析:(1)当时,

;解
的单调递增区间是,单调递减区间是
(2)因为函数在区间上为减函数,
所以恒成立,
恒成立,
(3)因为当时,不等式恒成立,
恒成立,设
只需即可

①当时,
时,,函数上单调递减,故成立;
②当时,令,因为,所以解得
(i)当,即时,在区间
则函数上单调递增,故上无最大值,不合题设;
(ii)当时,即时,在区间;在区间
函数上单调递减,在区间单调递增,同样无最大值,不满足条件;
③当时,由,故
故函数上单调递减,故成立
综上所述,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[nn+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax(a>0).
(I)当a=2时,求f(x)的单调区间与极值;
(Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数);
(Ⅰ)如果函数有相同的极值点,求的值;
(Ⅱ)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(Ⅲ)记函数,若函数有5个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的极小值;
(Ⅱ)若函数上为增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为Sn,对一切正整数n,点在函数的图像上,且过点的切线的斜率为kn
(1)求数列的通项公式;
(2)若,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

同步练习册答案