精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,则实数a的取值范围为(
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.

【答案】D
【解析】解:函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点, ∴f(x)=﹣g(x)有解,
∴lnx﹣x3=﹣x3+ax,
∴lnx=ax,在(0,+∞)有解,
分别设y=lnx,y=ax,
若y=ax为y=lnx的切线,
∴y′=
设切点为(x0 , y0),
∴a= ,ax0=lnx0
∴x0=e,
∴a=
结合图象可知,a≤
故选:D.

由题意可知f(x)=﹣g(x)有解,即y=lnx与y=ax有交点,根据导数的几何意义,求出切点,结合图象,可知a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x-4| (x∈R)

(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;

(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;

(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.

(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为 ,试确定点M在EC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣m(lnx+ )(m为实数,e=2.71828…是自然对数的底数). (Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若对任意成立,则下列命题中正确的命题个数是( )

(1)

(2)

(3)不具有奇偶性

(4)的单调增区间是

(5)可能存在经过点的直线与函数的图象不相交

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点,曲线上任意一点满足

的方程;

已知点,动点 在曲线C上,曲线C在Q处的切线与直线PA,PB都相交,交点分别为D,E,求的面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形ABCD中, ,若将其沿AC折成直二面角D﹣AC﹣B,则三棱锥D﹣ACB的外接球的表面积为(
A.16π
B.8π
C.4π
D.2π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线点,已知米,米.

(1)要使矩形的面积大于平方米,则的长应在什么范围内?

(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.

查看答案和解析>>

同步练习册答案