【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,则实数a的取值范围为( )
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x-4| (x∈R)
(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;
(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.
(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为 ,试确定点M在EC上的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣m(lnx+ )(m为实数,e=2.71828…是自然对数的底数). (Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,,若对任意成立,则下列命题中正确的命题个数是( )
(1)
(2)
(3)不具有奇偶性
(4)的单调增区间是
(5)可能存在经过点的直线与函数的图象不相交
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三点,,,曲线上任意一点满足.
求的方程;
已知点,动点 在曲线C上,曲线C在Q处的切线与直线PA,PB都相交,交点分别为D,E,求与的面积的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形ABCD中, , ,若将其沿AC折成直二面角D﹣AC﹣B,则三棱锥D﹣ACB的外接球的表面积为( )
A.16π
B.8π
C.4π
D.2π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于平方米,则的长应在什么范围内?
(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com