分析 先根据题目的条件建立关于a、b、c的关系式,再结合基本不等式求出最小即可,注意等号成立的条件.
解答 解:∵f(x)=ax2+bx+c
∴f′(x)=2ax+b,f′(0)=b>0
∵对任意实数x都有f(x)≥0
∴a>0,c>0,b2-4ac≤0即 $\frac{4ac}{{b}^{2}}$≥1
则 $\frac{f(1)}{f′(0)}$=$\frac{a+b+c}{b}$=1+$\frac{a+c}{b}$,
而($\frac{a+c}{b}$)2=$\frac{{a}^{2}{+c}^{2}+2ac}{{b}^{2}}$≥$\frac{4ac}{{b}^{2}}$≥1,
∴$\frac{f(1)}{f′(0)}$=$\frac{a+b+c}{b}$=1+$\frac{a+c}{b}$≥2,
故答案为:2.
点评 本题主要考查了导数的运算,以及函数的最值及其几何意义和不等式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com