精英家教网 > 高中数学 > 题目详情

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.
(1) 若成等比数列,求之间满足的等量关系;
(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

(1) ;(2)不成立;(3) 对于首项为正整数,公差为正整数的无穷等差数列,总可以找到一个无穷子数列,使得是一个等比数列.

解析试题分析:(1)由已知可得:,      1分
,即有,        3分
,化简可得. .      4分
(2) ,又,
,   6分
由于是正整数,且,则,
是满足的正整数,则,
,
所以,> ,从而上述猜想不成立.         10分
(3)命题:对于首项为正整数,公差为正整数的无穷等差数列,总可以找到一个无穷子数列,使得是一个等比数列.   13分
此命题是真命题,下面我们给出证明.
证法一: 只要证明对任意正整数n,都在数列{an}中.因为bn=a(1+d)n=a(1+d+d2+…+dn)=a(Md+1),这里M=+d+…+dn-1为正整数,所以a(Md+1)=a+aMd是{an}中的第aM+1项,证毕.      18分
证法二:首项为,公差为( )的等差数列为,考虑数列中的项:
依次取数列中项,,
,则由,可知,并由数学归纳法可知,数列的无穷等比子数列.    18分
考点:等比数列的简单性质;数列的综合应用。
点评:此题考查了等差数列的性质即通项公式,同时本题属于新定义及结论探索性问题,这类试题的一般解法是:充分抓住已知条件,找准问题的突破点,由浅入深,多角度、多侧面探寻,联系符合题设的有关知识,合理组合发现新结论,围绕所探究的结论环环相扣,步步逼近发现规律,得出结论.熟练掌握公式及性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
已知有穷数列共有项(整数),首项,设该数列的前项和为,且其中常数⑴求的通项公式;⑵若,数列满足
求证:
⑶若⑵中数列满足不等式:,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明数列是等比数列;
(2)设,求及数列的通项;
(3)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)设数列为单调递增的等差数列依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若求数列的前项和
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn=2n2为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知曲线,从上的点轴的垂线,交于点,再从点轴的垂线,交于点
.。
求数列的通项公式;
,数列的前项和为,试比较的大小
,数列的前项和为,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知数列的前n项和为,且
(Ⅰ)求数列通项公式;
(Ⅱ)若,求证数列是等比数列,并求数
的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.(最佳使用年限佳是使年平均费用最小的时间)

查看答案和解析>>

同步练习册答案