精英家教网 > 高中数学 > 题目详情
如图所示,在直四棱柱中,底面是矩形,是侧棱的中点.

(1)求证:平面
(2)求二面角的大小.
(1)详见解析
(2)二面角的大小为 .
解:建立如图所示空间直角坐标系.
(1) 
       
.
(2)设 是平面的一个法向量,
 
 
解得 ,取 ,得
 , 的一个法向量为 
的夹角为 ,则 
结合图形,可判别得二面角 是锐角,它的大小为 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,所在平面互相垂直,且,E、F分别为AC、DC的中点.
(1)求证:
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB ≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三棱柱的各棱长均为2,侧棱与底面所成的角为为锐角,且侧面⊥底面,给出下列四个结论:



③直线与平面所成的角为
.
其中正确的结论是( )
A.①③B.②④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且的中点,上的点.
(1)求异面直线所成角的大小(结果用反三角函数表示);
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.

查看答案和解析>>

同步练习册答案