精英家教网 > 高中数学 > 题目详情
在△ABC的三个内角A、B、C所对的边分别a、b、c,B=
3
,a=2csinA
.设函数f(x)=sin2x+4cosAcos2x
(1)求角C的大小;
(2)求函数f(x)的单调递增区间.
分析:(1)由正弦定理化简已知的等式,根据sinA的值不为0,得出sinC的值,由B的度数,得出A+C的度数,利用特殊角的三角函数值即可得到C的度数;
(2)由(1)得出的C=A,将A的度数代入函数解析式中利用特殊角的三角函数值化简,再利用二倍角的余弦函数公式化简,最后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的递增区间列出关于xx的不等式,求出不等式的解集即可得到f(x)的单调递增区间.
解答:解:(1)由正弦定理化简a=2csinA得:sinA=2sinCsinA,
∵sinA≠0,∴sinC=
1
2

∵B=
3
,∴A+C=
π
3

则C=A=
π
6

(2)f(x)=sin2x+4cos
π
6
cos2x=sin2x+2
3
cos2x
=sin2x+
3
(1+cos2x)=sin2x+
3
cos2x+
3
=2sin(2x+
π
3
)+
3

令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
(k∈Z),解得:kπ-
12
≤x≤kπ+
π
12
(k∈Z),
则函数f(x)的单调递增区间为[kπ-
12
,kπ+
π
12
](k∈Z).
点评:此题考查了正弦定理,二倍角的余弦函数公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC的三个内角A、B、C所对的边分别a、b、c,B=
3
,a=2csinA

(Ⅰ)求角C的大小;
(Ⅱ)当x∈[0,
π
2
]
时,求函数f(x)=sin2x+4cosAcos2x的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省滨州市滨城一中高三(上)质检数学试卷(理科)(解析版) 题型:解答题

在△ABC的三个内角A、B、C所对的边分别a、b、c,.设函数f(x)=sin2x+4cosAcos2x
(1)求角C的大小;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省滨州市滨城一中高三(上)质检数学试卷(理科)(解析版) 题型:解答题

在△ABC的三个内角A、B、C所对的边分别a、b、c,.设函数f(x)=sin2x+4cosAcos2x
(1)求角C的大小;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市高三10月月考理科数学试卷(解析版) 题型:解答题

(本小题满分13分)

在△ABC的三个内角A、B、C所对的边分别a、b、c,

  (Ⅰ)求角C的大小;

(Ⅱ)当时,求函数的最大值

 

查看答案和解析>>

同步练习册答案