精英家教网 > 高中数学 > 题目详情
10.设抛物线y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=$\frac{1}{2}$的椭圆与抛物线的一个交点为$E(\frac{2}{3},\frac{{2\sqrt{6}}}{3})$;自F1引直线交抛物线于P、Q两个不同的点,点P关于x轴的对称点记为M,设$\overrightarrow{{F_1}P}=λ\overrightarrow{{F_1}Q}$.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)若$λ∈[\frac{1}{2},1)$,求|PQ|的取值范围.

分析 (Ⅰ)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),运用离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆的方程;再由焦点坐标可得m=1,进而得到抛物线的方程;
(Ⅱ)记P(x1,y1)、Q(x2,y2),运用向量共线的坐标表示和联立直线方程和抛物线方程,运用韦达定理和弦长公式,及基本不等式,即可得到所求范围.

解答 解:(Ⅰ)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由E在椭圆上,得$\frac{4}{{9{a^2}}}+\frac{24}{{9{b^2}}}=1$①,
e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{1}{2}$ ②
由①、②解得a2=4,b2=3,
椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;
可得焦点为F1(-1,0),F2(1,0),
可得抛物线y2=4mx(m>0)的准线为x=-m,
即有m=1,易得抛物线的方程是:y2=4x;
(Ⅱ)记P(x1,y1)、Q(x2,y2),
由$\overrightarrow{{F_1}P}=λ\overrightarrow{{F_1}Q}$得:y1=λy2,③
设直线PQ的方程为y=k(x+1),
与抛物线的方程联立,得:ky2-4y+4k=0,
即有y1y2=4,④y1+y2=$\frac{4}{k}$,⑤
由③④⑤消去y1,y2得:${k^2}=\frac{4λ}{{{{(λ+1)}^2}}}$,
则$|PQ|=\sqrt{1+\frac{1}{k^2}}|{y_2}-{y_1}|$,
由弦长公式得:$|PQ|=\sqrt{(1+\frac{1}{k^2})}\frac{{\sqrt{16-16{k^2}}}}{|k|}$
化简为:$|PQ{|^2}=\frac{{16-16{k^4}}}{k^4}$,
代入λ,可得|PQ|2=$\frac{(λ+1)^{4}}{{λ}^{2}}$-16=(λ+$\frac{1}{λ}$+2)2-16,
∵$λ∈[\frac{1}{2},1)$,∴$λ+\frac{1}{λ}∈(2,\frac{5}{2}]$,
于是:$0<|PQ{|^2}≤\frac{17}{4}$,
即有$|PQ|∈(0,\frac{{\sqrt{17}}}{2}]$.

点评 本题考查椭圆和抛物线的方程的求法,注意运用椭圆的离心率和点满足椭圆方程,以及抛物线的性质,考查向量共线的坐标表示,联立直线方程和抛物线方程,运用韦达定理和弦长公式,考查运算化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.$\root{4}{{{{(-2)}^4}}}$的运算结果是(  )
A.2B.-2C.±2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={m,5},B={m2+1,m,2},若x∈A是x∈B的充分条件,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式为an=log3$\frac{n}{n+1}$(n∈N*),设其前n项和为Sn,则使Sn<-4成立的最小自然数n等于81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,矩形ABCD中,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,在△ADE翻折的过程中,有下列命题:
①BM是定值;
②点M在表面积为5π的球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE;
⑤三棱锥A1-CDE体积的最大值是$\frac{\sqrt{2}}{6}$.
其中,所有正确命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连结DE.
(Ⅰ)若BD=6,求线段DE的长;
(Ⅱ)过点E作半圆O的切线,切线与AC相交于点F,证明:AF=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知[x]表示不超过x的最大整数(x∈R),如[-1.3]=-2,[0.8]=0,[3.4]=3,定义{x}=x-[x],给出下列命题,其中正确的是①③④.
①函数y={x}的周期为1.
②函数y={x}的定义域为R,值域为[0,1].
③在平面上,由满足[x]2+[y]2=50的点(x,y)所形成的图形的面积是12.
④设函数f(x)=$\left\{\begin{array}{l}{\{x\},x≥0}\\{f(x+1),x<0}\end{array}\right.$,则函数y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$有3个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.平面上有A(2,-1),B(1,4),D(4,-3)三点,点C在直线AB上,且$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{BC}$,连接DC延长至E,使|$\overrightarrow{CE}$|=$\frac{1}{4}$|$\overrightarrow{ED}$|,则点E的坐标为($\frac{8}{3}$,-7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,复数z=$\frac{a+2i}{1-i}$为纯虚数,则复数|z-1|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

同步练习册答案