精英家教网 > 高中数学 > 题目详情
设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<xi-1<xi…<xn=b,把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,…,n),作和式Sn=
n
i=1
f(ξi)△x
(其中△x为小区间的长度),那么Sn的大小(  )
A、与f(x)和区间[a,b]有关,与分点的个数n和ξi的取法无关
B、与f(x)和区间[a,b]和分点的个数n有关,与ξi的取法无关
C、与f(x)和区间[a,b]和分点的个数n,ξi的取法都有关
D、与f(x)和区间[a,b]和ξi取法有关,与分点的个数n无关
分析:结合学过的定积分的概念,看出在求定积分之前,和式的值与三个方面都有关系,得到正确结果.
解答:解:∵用分点a=x0<x1<…<xi-1<xi…<xn=b,
把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,…,n),
作和式Sn=
n
i=1
f(ξi)△x

∴若再对和式求极限,则可以得到函数式的定积分,
在求定积分前,和式的大小与函数式,分点的个数和变量的取法有关,
故选C.
点评:本题考查定积分的概念,本题解题的关键是看清概念的应用,注意看清各个量和和式的关系,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)在区间(-a,a)(a>0)内为奇函数且可导,证明:f′(x)是(-a,a)内的偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+x+1,a∈R.设函数f(x)在区间(-
2
3
,-
1
3
)内是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)已知函数f(x)=sin(2ωx-
π
6
)-4sin2ωx+a,(ω>0)
,其图象的相邻两个最高点之间的距离为π,
(1) 求函数f(x)的单调递增区间;
(2) 设函数f(x)在区间[0,
π
2
]
上的最小值为-
3
2
,求函数f(x),(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)已知函数f(x)=|x|•(x-a).
(1)判断f(x)的奇偶性;
(2)设函数f(x)在区间[0,2]上的最小值为m(a),求m(a)的表达式;
(3)若a=4,证明:方程f(x)+
4x
=0有两个不同的正数解.

查看答案和解析>>

同步练习册答案