精英家教网 > 高中数学 > 题目详情
已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是
①②③
①②③
(多填、少填、错填均得零分).
分析:根据导数的运算法则逐个命题判断即可得到结论.
解答:解:①中,由f(x)=xn,得f(5)(1)=5×4×3×2×1=120,故①正确;
②中,f(1)(x)=f′(x)=-sinx,f(2)(x)=-cosx,f(3)(x)=sinx,f(4)(x)=cosx=f(x),故②正确;
③中,由于f(x)=ex,所以f(1)(x)=ex,f(2)(x)=ex,…,f(n)(x)=ex=f(x),故③正确;
④中,令f(x)=x,g(x)=1,则h(x)=x,
而h(1)(x)=1,f(1)(x)•g(1)(x)=0,所以h(1)(x)≠f(1)(x)g(1)(x),故④错误;
故答案为:①②③.
点评:本题考查导数的运算性质,考查学生的运算能力,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且f(x+
π
2
)
是偶函数,给出下列四个结论:
①f(x)是周期函数;
②x=π是f(x)图象的一条对称轴;
③(-π,0)是f(x)图象的一个对称中心;
④当x=
π
2
时,f(x)一定取最大值.
其中正确的结论的代号是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<f(
13
)
,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<f(
1
3
)
,则x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是(  )
A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能确定

查看答案和解析>>

同步练习册答案