A. | $\frac{\sqrt{3}}{9}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.
解答 解:圆(x-2)2+y2=1的圆心为(2,0),半径为1.
要使直线y=kx与圆(x-2)2+y2=1相交,
则圆心到直线y=kx的距离$\frac{|2k|}{\sqrt{{k}^{2}+1}}$<1,解得-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$.
在区间[-3,3]中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”
发生的概率为$\frac{\frac{2\sqrt{3}}{3}}{6}$=$\frac{\sqrt{3}}{9}$.
故选A.
点评 本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | f(x)=x+2013 | B. | f(x)=-x+2013 | C. | f(x)=-x-2013 | D. | f(x)=x-2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({1,\frac{{\sqrt{5}}}{2}})$ | B. | $({\frac{{\sqrt{5}}}{2},+∞})$ | C. | $({1,\frac{5}{4}})$ | D. | $({\frac{5}{4},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-3,-2) | B. | [-3,-1] | C. | (-2,1] | D. | [-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1+i | B. | 1-i | C. | $\frac{1}{2}+\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com