精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-ax+a+3,g(x)=x-a.若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
[-3,6]
[-3,6]
分析:当x>a时,g(x)>0恒成立,显然不存在x0∈(a,+∞),使得f(x0)<0与g(x0)<0同时成立,当x≤a时,则需f(x)≥0在(-∞,a]上恒成立,只需f(x)在(-∞,a]上的最小值大于或等于零即可,利用二次函数的图象性质求最小值并解不等式即可得a的取值范围
解答:解:①若x≤a,则g(x)≤0,此时若不存在x0∈(-∞,a],使得f(x0)<0与g(x0)<0同时成立,需f(x)≥0在(-∞,a]上恒成立,
即x2-ax+a+3≥0在(-∞,a]上恒成立,
a>0
f(
a
2
)≥0
a≤0
f(a)≥0
,即
a>0
-
a2
4
+a+3≥0
a≤0
a+3≥0

解得:-3≤a≤6
②若x>a,则g(x)>0恒成立,显然不存在x0∈(a,+∞),使得f(x0)<0与g(x0)<0同时成立,此时a∈R
综上所述,若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,实数a的取值范围是[-3,6]
故答案为[-3,6]
点评:本题主要考查了二次函数和一次函数的图象和性质,不等式恒成立和能成立问题的解法,分类讨论的思想方法和转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案