精英家教网 > 高中数学 > 题目详情
对于抛物线y2=4x上任意一点Q,点P(a,0)满足|PQ|≥|a|,则a的取值范围是(  )
A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)
B
设点Q的坐标为(,y0),由|PQ|≥|a|,得+(-a)2≥a2,整理得(+16-8a)≥0,∵≥0,
+16-8a≥0,即a≤2+恒成立.而2+的最小值为2,所以a≤2.选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}的通项公式为an=
1
n(n+1)
(n∈N*)
,其前n项和
Sn
=
9
10
,则双曲线
x2
n+1
-
y2
n
=1
的渐近线方程为(  )
A.y=±
2
2
3
x
B.y=±
3
2
4
x
C.y=±
3
10
10
x
D.y=±
10
3
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.

(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,分别是轴和轴上的动点,若以为直径的圆与直线相切,则圆面积的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆锥曲线 (t为参数)的焦点坐标是            .

查看答案和解析>>

同步练习册答案