精英家教网 > 高中数学 > 题目详情

抛物线y=-2x2的准线方程是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:先把其转化为标准形式,再结合其准线的结论即可求出结果.
解答:∵y=-2x2
∴x2=-y;
∴2p=?=
又因为焦点在Y轴上,
所以其准线方程为y=
故选:D.
点评:本题主要考察抛物线的基本性质,解决抛物线准线问题的关键在于先转化为标准形式,再判断焦点所在位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①若|x-lgx|<x+|lgx|成立,则x>1;
②抛物线y=2x2的焦点坐标是(
1
2
,0)

③已知|
a
|=|
b
|=2
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)
;.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=2x2的焦点坐标为(  )
A、(1,0)
B、(
1
4
,0)
C、(0,
1
4
D、(0,
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:抛物线y=2x2的准线方程为y=-
1
2
;命题q:若函数f(x+1)为偶函数,则f(x)关于x=1对称.则下列命题是真命题的是(  )
A、p∧q
B、p∨(¬q)
C、(¬p)∧(¬q)
D、p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)给出下列三个命题:
①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
②双曲线C:
x2
16
-
y2
9
=-1
的离心率为
5
3

③若C1x2+y2+2x=0,⊙C2x2+y2+2y-1=0,则这两圆恰有2条公切线;
④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)+9-0互相垂直,则a=-1.
其中正确命题的序号是
②③
②③
.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案