精英家教网 > 高中数学 > 题目详情

已知函数, 其中
,其中相邻两对称轴间的距离不小于
(1)求的取值范围;
(2)在中,分别是角A、B、C的对边,,当最大时,的面积.

(1). (2).

解析试题分析:(1)
.
,函数的周期,由题意可知,即,解得,即的取值范围是. 6分
(2)由(1)可知的最大值为1,

 8分
由余弦定理知,又.
联立解得.   12分
考点:本题主要考查平面向量的坐标运算,余弦定理的应用,和差倍半的三角函数公式,三角函数的图象和性质,三角形面积公式。
点评:中档题,本题综合性较强,关键是准确进行向量的坐标运算,并运用三角公式对三角函数式进行化简。(2)小题之中,角的范围对确定角的大小至关重要。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,以轴的非负半轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,已知的横坐标分别为.

(1)的值
(2)求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中 )在处取得最大值2,其图象与轴的相邻两个交点的距离为
(I)求的解析式;
(II)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数在一个周期内的图象如图所示,
图象的最高点,为图象与轴的交点,且为正三角形.

(Ⅰ)求的值及函数的值域;
(Ⅱ)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最小值和最大值;
(2)设的内角的对应边分别为,且,若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图像下图所示。

(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(I)将表示成的函数,并求的最小正周期;
(II)记的最大值为 、分别为的三个内角对应的边长,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的最大值2,其图象相邻两条对称轴之间的距离为
(1)求的解析式;
(2)求函数的单调增区间;

查看答案和解析>>

同步练习册答案