精英家教网 > 高中数学 > 题目详情

已知函数y=f(x-1)是定义在R上的奇函数,函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称,那么y=g(x)的对称中心为


  1. A.
    (1,0)
  2. B.
    (-1,0)
  3. C.
    (0,1)
  4. D.
    (0,-1)
D
分析:由已知中函数y=f(x-1)是定义在R上的奇函数,结合奇函数图象的对称性及函数图象的平移变换法则,我们可以求出函数y=f(x)的图象的对称中心,进而根据函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称,求出函数y=g(x)的对称中心坐标.
解答:∵函数y=f(x-1)是定义在R上的奇函数
其图象关于原点对称
∴函数y=f(x)的图象,由函数y=f(x-1)的图象向左平移一个单位得到
∴函数y=f(x)的图象关于(-1,0)点对称
又∵函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称
故函数y=g(x)的图象关于(0,-1)点对称
故选D
点评:本题考查的知识点是奇偶函数图象的对称性,函数图象的平移变换及反函数的图象关系,其中熟练掌握函数图象的各种变换法则,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案