分析 (Ⅰ)设出直线l的方程,得到方程组,表示出x1•x2即可;(Ⅱ)由$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-μ$\overrightarrow{QB}$),表示出关于λ,μ的方程,解出即可.
解答 解:(Ⅰ)设l方程为:y=kx+m,由
$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}=4y}\end{array}\right.$得:x2-4kx-4m=0,
所以x1•x2=-4m;
(Ⅱ) $\overrightarrow{AP}$=λ$\overrightarrow{PB}$,得$\frac{{x}_{1}}{{x}_{2}}$=λ,
由$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-μ$\overrightarrow{QB}$),
得2m[y1-μy2+(1-μ)m]=0,
从而$\frac{{{x}_{1}}^{2}}{4}$-μ$\frac{{{x}_{2}}^{2}}{4}$+(1-μ)m=0,
把x1•x2=-4m;
代入上式得${(\frac{{x}_{1}}{{x}_{2}})}^{2}$-(1-μ)$\frac{{x}_{1}}{{x}_{2}}$-μ=0,
则λ2+(1-μ)λ-μ=0,
所以λ=-1或λ=μ,而显然λ>0,
所以λ=μ.
点评 本题考查了抛物线问题,考查向量的垂直的性质,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{2}{3}$ | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 120 | B. | 240 | C. | 107 | D. | 360 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,5] | B. | (-1,5) | C. | [-1,5] | D. | (-5,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com